Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Biomol Struct Dyn ; : 1-12, 2021 Jun 21.
Article in English | MEDLINE | ID: covidwho-2271262

ABSTRACT

COVID-19 caused by SARS-CoV-2 is responsible for the deaths of millions of people worldwide. It is having devastating effects on the people of all countries. In this regard, the phytochemicals of medicinal plants could be explored to prevent this disease. M. oleifera is a miracle plant with antibacterial, antiviral, and antioxidant properties because of its high content of flavonoids, glucosides and glucosinolates. Therefore, we constructed a library of 294 phytochemicals of M. oleifera and filtered it through the FAF-Drugs4. Further, molecular docking studies of filtered phytochemicals were performed with Mpro enzyme to investigate the binding interactions. Drug likeness properties, ADMET prediction were analyzed to determine the therapeutic aspect of these compounds. Based on the binding energy score of the top 4 compounds, the results indicate that Vicenin-2 has the highest binding affinity (-8.6 kcal mol-1) as compared to the reference molecule (-8.4 kcal mol-1). ADMET result reveals that all top four compounds have minimal toxic effects and good absorption. Further, 500 ns molecular dynamics simulation of the top four compounds showed that Kaempferol-3-O-rutinoside and Vitexin have good stability with Mpro. These two compounds were then subjected for MMPBSA (last 50 ns) calculation to analyze the protein-ligand stability and dynamic behavior. Kaempferol-3-O-rutinoside and Vitexin showed very good binding free energy i.e. -40.136 kJ mol-1 and -26.784 kJ mol-1, respectively. Promising outcomes from MD simulations evidence the worth of these compounds for future drug development to combat coronavirus disease.Communicated by Ramaswamy H. Sarma.

2.
Struct Chem ; 33(5): 1815-1831, 2022.
Article in English | MEDLINE | ID: covidwho-1826770

ABSTRACT

The COVID-19 is still pandemic due to emerging of various variant of concern of SARS-CoV2. Hence, it is devastating the world, causing significant economic as well as social chaos. This needs great effort to search and develop effective alternatives along with vaccination. Therefore, to continue drug discovery endeavors, we used chalcone derivatives to find an effective drug candidate against SARS-CoV2. Chalcone is a common simple scaffold that exists in many diets as well as in traditional medicine. Natural as well as synthetic chalcones have shown numerous interesting biological activities and are also effective in fighting various diseases. Hence, various computational methods were applied to find out potential inhibitors of 3CLPro using a library of 3000 compounds of chalcones. Firstly, the screening by structure-based pharmacophore model yielded 84 hits that were subjected to molecular docking. The top 10 docked compounds were characterized for stability by using 100 ns molecular dynamic (MD) simulation approach. Further, the binding free energy calculation by MMPBSA showed that four compounds bind to 3CLPro enzyme with high affinity, i.e., - 87.962 (kJ/mol), - 66.125 (kJ/mol), - 59.589 (kJ/mol), and - 66.728 (kJ/mol), respectively. Since chalcone is a common simple scaffold that is present in many diets as well as in traditional medicine, we suggest that screened compounds may emerge as promising drug candidates for SARS-CoV-2. These compounds may be investigated in vitro to evaluate the efficacy against SARS-CoV-2. Supplementary Information: The online version contains supplementary material available at 10.1007/s11224-022-01887-2.

3.
Mol Divers ; 26(4): 2243-2256, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1460404

ABSTRACT

Blocking the main replicating enzyme, 3 Chymotrypsin-like protease (3CLpro) is the most promising drug development strategy against the SARS-CoV-2 virus, responsible for the current COVID-19 pandemic. In the present work, 9101 drugs obtained from the drug bank database were screened against SARS-CoV-2 3CLpro prosing deep learning, molecular docking, and molecular dynamics simulation techniques. In the initial stage, 500 drug-screened by deep learning regression model and subjected to molecular docking that resulted in 10 screened compounds with strong binding affinity. Further, five compounds were checked for their binding potential by analyzing molecular dynamics simulation for 100 ns at 300 K. In the final stage, two compounds {4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h-1,2,3-Benzotriazol-1-Yl)-5-Phenylpent-4-Enyl]Phenyl}(Difluoro)Methylphosphonic Acid and 1-(3-(2,4-dimethylthiazol-5-yl)-4-oxo-2,4-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-methylpiperazin-1-yl)urea were screened as potential hits by analyzing several parameters like RMSD, Rg, RMSF, MMPBSA, and SASA. Thus, our study suggests two potential drugs that can be tested in the experimental conditions to evaluate the efficacy against SARS-CoV-2. Further, such drugs could be modified to develop more potent drugs against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases , Deep Learning , Protease Inhibitors , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2
4.
Sci Rep ; 10(1): 20397, 2020 11 23.
Article in English | MEDLINE | ID: covidwho-940864

ABSTRACT

COVID-19 caused by the SARS-CoV-2 is a current global challenge and urgent discovery of potential drugs to combat this pandemic is a need of the hour. 3-chymotrypsin-like cysteine protease (3CLpro) enzyme is the vital molecular target against the SARS-CoV-2. Therefore, in the present study, 1528 anti-HIV1compounds were screened by sequence alignment between 3CLpro of SARS-CoV-2 and avian infectious bronchitis virus (avian coronavirus) followed by machine learning predictive model, drug-likeness screening and molecular docking, which resulted in 41 screened compounds. These 41 compounds were re-screened by deep learning model constructed considering the IC50 values of known inhibitors which resulted in 22 hit compounds. Further, screening was done by structural activity relationship mapping which resulted in two structural clefts. Thereafter, functional group analysis was also done, where cluster 2 showed the presence of several essential functional groups having pharmacological importance. In the final stage, Cluster 2 compounds were re-docked with four different PDB structures of 3CLpro, and their depth interaction profile was analyzed followed by molecular dynamics simulation at 100 ns. Conclusively, 2 out of 1528 compounds were screened as potential hits against 3CLpro which could be further treated as an excellent drug against SARS-CoV-2.


Subject(s)
Anti-HIV Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Cheminformatics/methods , Deep Learning , Drug Repositioning/methods , HIV-1/drug effects , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Evaluation, Preclinical/methods , Humans , Infectious bronchitis virus/drug effects , Molecular Docking Simulation , SARS-CoV-2/enzymology
5.
J Biomol Struct Dyn ; 40(3): 1084-1100, 2022 02.
Article in English | MEDLINE | ID: covidwho-772859

ABSTRACT

The sudden outbreak of COVID-19 has been responsible for several deaths across the globe. Due to its high contagious nature, it spreads from one human to another very quickly. Now it becomes a global public health threat with no approved treatments. In silico techniques can accelerate the drug development process. Our research aimed to identify the novel drugs for inhibition of Main protease (Mpro) enzyme of COVID-19 by performing in silico approach. In this context, a library consisting of 3180 FDA-approved drugs from 'the ZINC database' was used to identify novel drug candidates against 'the Mpro' of SARS-CoV-2. Initially, the top 10 drugs out of 3180 drugs were selected by molecular docking according to their binding score. Among 10 selected drugs; seven drugs that showed binding with Mpro enzyme residue Glu166 were subjected to100 ns Molecular dynamics (MD) simulation. Out of seven compounds, four namely, ZINC03831201, ZINC08101052, ZINC01482077, and ZINC03830817 were found significant based on MD simulation results. Furthermore, RMSD, RMSF, RG, SASA, PCA, MMPBSA (for last 40 ns) were calculated for the 100 ns trajectory period. Currently, the world needs potent drugs in a short period and this work suggests that these four drugs could be used as novel drugs against COVID-19 and it also provides new lead compounds for further in vitro, in vivo, and ongoing clinical studies against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Humans , Molecular Docking Simulation , Peptide Hydrolases , SARS-CoV-2 , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL